Iterative scheme to a coupled system of highly nonlinear fractional order differential equations

نویسندگان

  • Kamal Shah Department of Mathematics, University of Malakand, Chakadara Dir(L), Khyber Pakhtunkhwa, Pakistan
  • Rahmat Khan Department of Mathematics, University of Malakand, Chakadara Dir(L), Khyber Pakhtunkhwa, Pakistan
چکیده مقاله:

In this article, we investigate sufficient conditions for existence of maximal and minimal solutions to a coupled system of highly nonlinear differential equations of fractional order with mixed type boundary conditions. To achieve this goal, we apply monotone iterative technique together with the method of upper and lower solutions. Also an error estimation is given to check the accuracy of the method. We provide an example to illustrate our main results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

iterative scheme to a coupled system of highly nonlinear fractional order differential equations

in this article, we investigate sufficient conditions for existence of maximal and minimalsolutions to a coupled system of highly nonlinear differential equations of fractional order with mixedtype boundary conditions. to achieve this goal, we apply monotone iterative technique togetherwith the method of upper and lower solutions. also an error estimation is given to check theaccuracy of the me...

متن کامل

Existence and multiplicity of positive solutions for a coupled system of perturbed nonlinear fractional differential equations

In this paper, we consider a coupled system of nonlinear fractional differential equations (FDEs), such that both equations have a particular perturbed terms. Using emph{Leray-Schauder} fixed point theorem, we investigate the existence and multiplicity of positive solutions for this system.

متن کامل

New existence results for a coupled system of nonlinear differential equations of arbitrary order

This paper studies the existence of solutions for a coupled system of nonlinear fractional differential equations. New existence and uniqueness results are established using Banach fixed point theorem. Other existence results are obtained using Schaefer and Krasnoselskii fixed point theorems. Some illustrative examples are also presented.

متن کامل

existence and multiplicity of positive solutions for a coupled system of perturbed nonlinear fractional differential equations

in this paper, we consider a coupled system of nonlinear fractional differential equations (fdes), such that bothequations have a particular perturbed terms. using emph{leray-schauder} fixed point theorem, we investigate the existence and multiplicity of positive solutions for this system.

متن کامل

new existence results for a coupled system of nonlinear differential equations of arbitrary order

this paper studies the existence of solutions for acoupled system of nonlinear fractional differential equations. newexistence and uniqueness results are established using banach fixedpoint theorem. other existence results are obtained using schaeferand krasnoselskii fixed point theorems. some illustrative examplesare also presented.

متن کامل

The existence results for a coupled system of nonlinear fractional differential equations with multi-point boundary conditions

In this paper, we study a coupled system of nonlinear fractional differential equations with multi-point boundary condi- tions. The differential operator is taken in the Riemann-Liouville sense. Applying the Schauder fixed-point theorem and the contrac- tion mapping principle, two existence results are obtained for the following system D^{alpha}_{0+}x(t)=fleft(t,y(t),D^{p}_{0+}y(t)right), t in (0,...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 3  شماره 3

صفحات  163- 176

تاریخ انتشار 2015-07-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023